The realization space is
  [1   1   0   x1^2 - 2*x1 + 1   0   1   1               0   x1^2 - 2*x1 + 1    1      x1 - 1]
  [1   0   1             -x1^2   0   1   0   x1^2 - x1 + 1             -x1^2   x1        x1^2]
  [0   0   0                 0   1   1   1       x1^2 - x1        -x1^2 + x1   x1   x1^2 - x1]
in the multivariate polynomial ring in 1 variable over ZZ
within the vanishing set of the ideal
Ideal (4*x1^13 - 22*x1^12 + 56*x1^11 - 87*x1^10 + 90*x1^9 - 63*x1^8 + 29*x1^7 - 8*x1^6 + x1^5)
avoiding the zero loci of the polynomials
RingElem[x1, x1 - 1, 2*x1^2 - 2*x1 + 1, x1^2 - x1 + 1, 2*x1 - 1, 3*x1^2 - 3*x1 + 1, x1^3 - x1 + 1]